BAEYER-VILLIGER OXIDATION VIA CARBOCATIONS IN A STRAINED **CAGE SYSTEM**

Ken-ichi Hirao, Hidetoshi Miura, Hiromitsu Hoshino. and Osamu Yonemitsu Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan (Received in Japan **6 August 1976;** received in UK for publication **9** September 1976)

Pentacyclic cage compounds with bicyclo[2.2.O]hexane. which were easily synthesized photochemically from the corresponding Diels-Alder dimers,¹ undergo remarkable reactions releasing most or some of their strain energies, e.g., rearrangement to a bisnordiamantane, 2 hydrogenolysis to ditwistane and bisnorditwistane, 3 reversion to Diels-Alder dimers, 1a and ring expansion with diazomethane.^{1b} We now report Baeyer-Villiger oxidation of a cage compound $(1)^4$ as an extension of our work for examination of the reactivity of cage compounds and on their synthetic applications. Compound 1 gave mainly a six-membered lactone (2) and a rearranged five-membered lactone (4), which were probably formed through a mechanism other than the ordinary one. 6

A solution of 1 (0.7 g) and m-chloroperbenzoic acid (1.5 eq) in chloroform (30 ml) was allowed to stand at room temperature for 1 hr to give quite rapidly three lactones, 10-oxapentacyclo- $[5.4.0.0^{2,5}.0^{3,9}.0^{4,8}]$ undecan-11-one (2) $[50%;$ mp 145.5-147° (hexane); \underline{v} (CC1₄) 1761, 1368, 1071 cm⁻¹; $\underline{\delta}$ (CCl₄) 4.70 (lH, t, J = 6 Hz); m/e 162 (M⁺, 1), 118 (3), 117 (10), 105 (10), 97 (55), 91 (13), 66 (100%)], 11-oxapentacyclo[5.4.0.0^{2,5}.0^{3,9}.0^{4,8}]undecan-10-one (3) [1.1%; mp 127-128.5° (hexane); \underline{v} (CC1₄) 1753, 1372, 1060 cm⁻¹; $\underline{6}$ (CC1₄) 4.64 (1H, m); <u>m/e</u> 162 (M⁺, 2), 118 (3), 117

(8), 105 (5), 97 (36), 91 (9), 66 (100%)] and 11-oxapentacyclo[6.3.0.0^{2,4}.0^{3,7}.0^{5,9}]undecan-10one (4) [13%; mp 135-136° (hexane); $\frac{1}{2}$ (CC1_A) 1781, 1348, 1176, 1008 cm⁻¹; $\frac{1}{2}$ (CDC1₃) 5.06 (1H, q, $J = 3$ and 7 Hz); m/e 162 (M⁺, 3), 118 (23), 117 (34), 91 (14), 84 (40), 79 (100), 66 (6%)].⁷ Results of this reaction in various solvents are shown in Table I.

solvent	time (min)	yield, 3^a		
		$\frac{4}{\pi}$	\tilde{z}	$\frac{4}{2}$ ratio
benzene	15	12	56	0.21
dioxane	15	14	55	0.25
chloroform	3	10	35	0.29
	7	13	49	0.27
	15	15	55	0.27
	30	16	57	0.28
dioxane: $H20$ (9:1)	60	15	45	0.33
dioxane: H_2 0 (1:1)	60	31	46	0.67

Table I. Oxidation of $\frac{1}{10}$ (0.35 g) in various solvents (16 ml) with m-chloroperbenzoic acid (1.5 eq) at room temperature.

^a Calculated by using the NMR integration data at 4.70 ppm for 2 and at 5.06 ppm for 4 . The yield of 3 was almost nil.

Both 2 and 3 have a six-membered lactone (IR) and a similar fragmentation pattern (mass). The distinction between 2 and 3 was provided by NMR spectra of $2a$ and $3a$ derived from a deuterated starting material (1a).^{1b} In 2a, the original signal at 4.70 ppm disappeared, whereas that at 4.64 ppm remained unchanged in 3a. Compound $\frac{4}{9}$ has a five-membered lactone (IR 1781 cm⁻¹) and a fragmentation pattern (mass) clearly different from those of 2 and 3 , though all three products have the same molecular ion peak at 162. The quartet signal at 5.06 ppm in 4 changed to a doublet $(J = 7 Hz)$ in a deuterated product (4a). These data and mechanistic consideration revealed the structure of 4, which was confirmed by an unequivocal synthesis of 7-methoxycarbonyl tetracyclo[4.3.0.0^{2,4}.0^{3,8}]nonan-5-one (5) [mp 45-46° (benzene-hexane); $\frac{1}{2}$ (CCl₄) 1730, 1200 cm⁻¹; 6 (CCl_A) 1.56-1.80 (1H, m), 1.86-2.5 (4H, m), 2.52-2.96 (4H, m), 3.58 (3H, s); m/e 192 (M⁺, 4), 164 (7), 149 (20), 114 (95), 99 (48), 79 (100%)] from the known half ester (i) as shown in the following scheme.

a, $Soc1_2$, pyridine, 30-35°, 4 hr; b, CH_2N_2 , Et_2O ; c, CuI , THF, 40-45°; d, KMnO₄, NaOH; e, CH₂N₂.

Those data and following discussions suggest a mechanism other than the ordinary one, First, 4 is the primary product, not the secondary one formed from 2 by an acid-catalyzed rearrangement. Treatment of 2 with m-chloroperbenzoic acid and m-chlorobenzoic acid at room temperature for 24 hr or with acetic acid at 50° for 12 hr gave no trace of $4.^{12}$ Progress of the oxidation in chloroform was followed by NMR analysis, and the ratio of $4:2$ was found to remain almost constant throughout the oxidation. Compound $\frac{4}{\infty}$ cannot be apparently formed by the migration of bond a or b in an intermediate $\binom{6}{w}$. Second, the ratio of $\frac{4}{w}:\mathbb{Z}$ changes with increasing solvent polarity (Table I). This solvent effect suggests that 2 is formed by a mechanism different from that for the formation of 4. The migration mechansim is conceivable. However, since there seems mu to be no significant difference in migratory aptitude between bonds a and b in 6^{1b}_{10} the large

difference between the yields of 2 and 3 is difficult to be interpreted by the migration mechanism. A short-lived carbocation (7a) may be an intermediate from 6 to 2.

In conclusion, the mechanism of the oxidation of i involves mainly **a** carbocation (7b) and probably another cation (7a) as intermediates¹³ formed by a heterolytic cleavage of bond a in $\frac{6}{90}$ rather than the migration of the same bond. This cleavage can be assisted by the most strained central bond in the bicyclo[Z.Z.O]hexane system.

REFERENCES AND NOTES

- (1) (a) T. Iwakuma, K. Hirao, and O. Yonemitsu, <u>J. Am. Chem</u>. Soc., 96, 2570 (1974); (b) K. Hirao, E. Abe, and O. Yonemitsu, Tetrahedron Lett., 4131 (1975), and references cited therein.
- (2) K. Hi**ra**o, M. Taniguchi, O. Yonemitsu, J. L. Flippen, I. L. Karle, and B. Witkop, <u>J</u>. <u>Am</u>. Chem. Soc., 97, 3249 (1975).
- (3) K. Hirao, T. Iwakuma, M. Taniguchi, E. Abe, O. Yonemitsu, T. Date, and K. Kotera, <u>J</u>. <u>Che</u> Soc. Chem. Commun., 691 (1974).
- (4) Very recently, Mehta et al. "reported that oxidation of 1 with ceric ion furnished 3 as a single product, while that with m-chloroperbenzoic acid gave a mixture of 2 and 3. Mechanistic considerations for these reactions were also presented.⁵ This work prompted us to report our preliminary results concerning the oxidation of 1 which makes it difficult to accept most of Mehta's discussions and conclusions.
- (5) G. Mehta, P. N. Pandey, and T. -L. Ho, <u>J. Org. Chem</u>., 41, 953 (1976).
- (6) H. 0. House, "Modern Synthetic Reactions", Benjamin, New York, N. Y., 1972, pp 321-329.
- (7) Oxidation of $\frac{1}{\omega}$ with ceric ammonium sulfate under Mehta's conditions gave only $\frac{4}{9}$, and not $\frac{3}{2}$.
- (8) L. M. Rice and E. E. Reid, 2. Am. Chem. a., 7& 3955 (1952). --
- (9) Similar rearranged lactones from strained compounds with bicyclo[2.2.0]hex-2-yl ketones 10 and with a cyclobutyl ketone¹¹ have been obtained. A mechanism involving a cyclobutyl-cyclopropylcarbinyl rearrangement of the first formed ordinary oxidation products have been proposed in these cases.
- (10) W. G. Dauben and L. N. Reitmen, <u>J</u>. <u>Org</u>. <u>Chem</u>., 40 , 835 (1975); R. N. McDonald and G. E. Davis, ibid., 34, 1916 (1969).
- (11) G. Buchi and I. M. Goldman, <u>J. Am. Chem</u>. <u>Soc</u>., 79, 4741 (1957).
- (12) On treatment with a stronger acid (trifluoroacetic acid or E-toluenesulfonic acid) in chloroform at room temperature for 15 min or with acetic acid under reflux for 48 hr, 2 changed completely, of course, into 4.
- (13) A non-classical cation interzdiate has been proposed in the oxidation of tricyclo[3.2.1.- $0^{3,6}$]octan-7-one, 14 but an additional resonance stabilization owing to the cyclopropylcarbinyl-cyclobutyl system 15 may be hardly expected in the case of 1 with a highly strained and rather rigid ring system.
- (14) S. A. Monti and C. K. Ward, $Tetrahedron Lett$, 697 (1971).</u>
- (15) G. A. Olah, <u>J. Am. Chem. Soc</u>., 94, 808 (1972).